Fluorescence approach detects precancerous cells in esophagus

Using a molecular imaging approach that couples fluorescence endoscopy and fluorescently labeled wheat germ proteins, researchers at the University of Cambridge's MRC Cancer Cell Unit (Cambridge, England) have identified changes in the patterns of glycans, or sugar molecules, that line precancerous cells in the esophagus, allowing easier detection and removal of the cells before cancer progression.

In the study, the researchers examined the use of protein-specific molecular imaging methods that would permit early detection of precancerous markers in patients with Barrett’s esophagus. After analyzing the sugars present in human tissue samples obtained from various stages of cancer progression, the researchers found that there were different glycans present on the surface of precancerous cells. Because glycans have large structures and have been revealed to be altered in cancers—including pancreatic, colon, and stomach cancers—researchers theorized that these structures could be used as molecular targets for the endoscopic imaging of mucosal surfaces.

So, researchers employed their fluorescent imaging approach to detect changes in glycan expression on the cell surface that accompany the transition from Barrett’s esophagus through dysplasia to esophageal adenocarcinoma in situ. After the study analysis, four glycan pathways were revealed to exhibit coordinated increases in the expression of genes encoding proteins involved in the biosynthesis and degradation of glycan structures in the progression to esophageal adenocarcinoma. The pathway for glycan degradation was supplemented during the metaplastic transition to Barrett’s esophagus, but the majority of augmentation in the glycosphingolipid pathway lactoseries took place as Barrett’s esophagus progressed to low-grade dysplasia and neo-lactoseries increased between low-grade dysplasia and high-grade dysplasia.

The study demonstrates that coordinated changes in glycan expression begin before the development of esophageal adenocarcinoma and provides a potential biomarker for the detection of dysplasia and the identification of those at risk of progression from Barrett’s esophagus to esophageal adenocarcinoma, according to researchers.

The work has been published in Nature Medicine; for more information, please visit http://www.nature.com/nm/journal/vaop/ncurrent/abs/nm.2616.html.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS