Laser module for lab-on-a-chip applications by Fisba Optik

Fisba Optik AG laser module for lab-on-a-chip applications

A new laser module from Fisba Optik AG (St. Gallen, Switzerland) creates optical traps by collecting and releasing particles in a microfluidic system for monitoring and manipulation, raising throughput of lab-on-a-chip applications for cell cytometry. With the module, 64 individually controllable diode lasers each shape a pixel on the printing plate every 2 ms. Intended for use in stand-alone applications and fluorescence microscope systems, the system can be equipped with any number of individually addressable laser tweezers.

More Biophotonics Products



FISBA: Laser Module for Lab-on-a-Chip Applications

Catching Particles with 64 Optical Tweezers

FISBA OPTIK AG has optimized a laser module to create multiple individually adaptable optical traps. It enables to collect and release particles in a micro-fluidic system for particular or simultaneous monitoring and manipulation. This way it significantly raises the throughput of lab-on-a-chip applications for biochemical reactions analysis and cell cytometry.  

FISBA’s laser module is compact, precise and reliable. Since half a decade it has been in continuous service in more than 10,000 plate setters for industrial offset printing machines around the world. Every two micro-seconds, each of its 64 individually controllable diode lasers shapes a pixel on the printing plate. The version designed for biotechnology uses the beams of light in a more sensitive way: As laser tweezers, they arrange molecules, cell fragments and particles inside a microfluidic system.

«This laser module helps to speed up the execution of biochemical studies, for example in pharmaceutical drug discovery processes or while testing flavoring substances in the food industry», explains René Salathé from the École polytechnique fédérale de Lausanne (EPFL), where the subassembly was tested in a new miniaturized analytical system. «Using multiple laser tweezers enables to trap and investigate cells, cell fragments and beads in a highly parallel manner».

«Lab-on-a-chip applications have an extremely compact design and present an efficient and more flexible alternative to microtiter plate procedures», says Urs Schneider from FISBA in St. Gallen, where the laser module was designed and assembled. «In order to achieve a high throughput, we used an array of 64 individually controllable diode lasers with micro optics capable of generating precise spotlights of only 10µm in diameter. They allow for examining, sorting and aligning of single particles at high speed», he adds.

Intended for use in stand-alone applications and microscope systems featuring fluorescence excitation, the system can be equipped with any number of individually addressable laser tweezers. It allows for parallel and interactive analyzing and manipulating of particles in a micro-fluidic reaction chamber. Thereby a very small solution quantity of only 0.5 µL is required at a flow rate of 0,008µL/s in the current design.
2,382 characters (incl. blanks)

FISBA OPTIK AG is one of the world’s leading suppliers of customized optical components, systems and micro systems, supplying products for medical applications, as well as biophotonics, the machine industry, industrial imaging and sensors, laser industry and aerospace.


Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS