New fluorescent protein makes internal organs visible, and does so noninvasively

Biophotonics researchers at Albert Einstein College of Medicine of Yeshiva University (Bronx, NY) have developed a fluorescent protein that enables scientists to clearly "see" the internal organs of living animals without the need for a scalpel or imaging techniques that can have side effects or increase radiation exposure.

Described in the July 17 online edition of Nature Biotechnology, the new protein could allow doctors, for example, to noninvasively monitor the growth of tumors in order to assess the effectiveness of anti-cancer therapies. In contrast to other body-scanning techniques, fluorescent-protein imaging does not involve radiation exposure or require the use of contrast agents.

The laboratory of Vladislav Verkhusha, Ph.D., associate professor of anatomy and structural biology at Einstein and the study's senior author, engineered a fluorescent protein from a bacterial phytochrome, the pigment that a species of bacteria uses to detect light. This new phytochrome-based fluorescent protein, dubbed iRFP, both absorbs and emits light in the near-infrared portion of the electromagnetic spectrum—the spectral region in which mammalian tissues are nearly transparent.

The researchers targeted their fluorescent protein to the liver—an organ particularly difficult to visualize because of its high blood content. Adenovirus particles containing the gene for iRFP were injected into mice. Once the viruses and their gene cargoes infected liver cells, the infected cells expressed the gene and produced iRFP protein. The mice were then exposed to near-infrared light and it was possible to visualize the resulting emitted fluorescent light using a whole-body imaging device. Fluorescence of the liver in the infected mice was first detected the second day after infection and reached a peak at day five. Additional experiments showed that the iRFP fluorescent protein was nontoxic.

"Our study found that iRFP was far superior to the other fluorescent proteins that reportedly help in visualizing the livers of live animals," said Grigory Filonov, Ph.D., a postdoctoral fellow in Dr. Verkhusha's laboratory at Einstein, and the first author of the Nature Biotechnology paper. "iRFP not only produced a far brighter image with higher contrast than the other fluorescent proteins, but was also very stable over time. We believe it will significantly broaden the potential uses for noninvasive whole-body imaging."

Dr. Filonov noted that fluorescent-protein imaging involves no radiation risk, which can occur with standard x-rays and computed tomography (CT) scanning. And unlike magnetic resonance imaging (MRI), in which contrasting agents must sometimes be swallowed or injected to make internal body structures more visible, the contrast provided by iRFP is so vibrant that contrasting agents are not needed.

This research was carried out at the Gruss Lipper Biophotonics Center and supported by grants from the National Institute of General Medicine Sciences of the National Institutes of Health (NIH).

-----

Posted by Lee Mather

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World