CELL BIOLOGY/PROTEOMICS: First-ever single-cell biological laser excites imagination

By engineering human embryonic kidney (HEK) cells to produce green fluorescent protein (GFP), and by placing one such cell between two mirrors to make an optical cavity with a 20 µm diameter, two Boston-based scientists have succeeded in creating the first “bio laser.” When Seok-Hyun Yun, an optical physicist at Harvard Medical School and Massachusetts General Hospital and his colleague Malte Gather, shone pulses of blue light onto the cell, it emitted a directional laser beam visible with the naked eye. And the cell remained unharmed.1

Yun and Gather say the bio laser’s light generates a unique emission spectrum related to both the structure of the cell and the proteins inside it—so biologists could use the approach to study cells.

Image courtesy of Nature Photonics and Malte Gather, Mass. General Hospital

In addition, Yun thinks that lasers could one day be generated or amplified inside the body, where they could penetrate the relevant tissues more deeply. For this, the work needs refinement, however, including development that would allow the laser to work inside a living organism. Yun thinks that integrating a nanoscale optical cavity into the laser cell itself could achieve the goal. Technologies to make such cavities are emerging and could be used to create a cell that could “self-lase” from inside tissue, he says. Because external light is needed to stimulate the laser action, though, Michael Berns, a biomedical engineer at the University of California, Irvine, sees the approach as more useful for studying thin-tissue systems or cells in culture or suspension.

1. S. H. Yun and M. Gather, Nature Photonics, doi:10.1038/nphoton.2011.99 (2011).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

NANOTECHNOLOGY/LIGHT ACTIVATION: IR light method turns blood clotting on (like drugs) and off (like nothing else)

Gold nanoparticles, controlled by infrared (IR) light from a pulsed femtosecond laser, promise to promote wound healing and help doctors control blood clotting in patients undergoing surgery.

Microscopy helps discover potential new drug target for cystic fibrosis

An international team of scientists, using automated microscopy and genetics, have discovered a promising potential drug target for cystic fibrosis.

Next-gen DNA sequencing helps provide new genetic clue to anorexia

The largest next-generation DNA sequencing study of anorexia nervosa to date has linked the eating disorder to variants in a gene coding for an enzyme that regulates cholesterol metabolism.

Synchrotron light identifies RNA double helix structure

Scientists at McGill University have crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS) and the Cornell High Energy Synchrotron to confirm th...

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS