Princeton Instruments EMCCD camera for spectroscopy

The ProEM:1600 EMCCD camera from Princeton Instruments (Trenton, NJ) utilizes the company's eXcelon technology to reduce interference fringes and increase detector sensitivity in the UV, blue and NIR spectral regions. Features include 16 µm pixels in both 1600 × 200 and 1600 × 400 formats, a 6.67 MHz readout rate and 1.5 µs vertical shift time to allow acquisition rates of over 3,000 spectra/sec. Applications include confocal Raman spectroscopy, hyperspectral imaging, and single-molecule spectroscopy.

More Products

-----

PRESS RELEASE

ProEM 1600 - EMCCD for Spectroscopy 

Date added: 01/26/2011 

Princeton Instruments is pleased to introduce the ProEM:1600, the most advanced spectroscopy EMCCD camera on the market to date. The latest addition to the popular ProEM™ product line, this camera utilizes proprietary Princeton Instruments eXcelon™ technology, which greatly reduces the interference fringes (i.e., etaloning effect) that have made back-thinned EMCCDs unusable in the NIR until now. eXcelon also increases the sensitivity of the detector in the UV, blue, and NIR spectral regions.

The eXcelon-enabled ProEM:1600 EMCCD camera features 16 micron pixels in both 1600 x 200 and 1600 x 400 formats. The ProEM:1600 has a high-speed, electron-multiplying (EM) mode capable of capturing fast dynamics as well as a traditional CCD mode that delivers ultralow read noise for high-precision photometry. The new camera’s 6.67 MHz readout rate and 1.5 µs vertical shift time allow acquisition rates of over 3000 spectra per second, outpacing any other available spectroscopy-format EMCCD camera by more than 2x.

“Among the primary applications of the ProEM:1600 camera are scanning confocal Raman spectroscopy, hyperspectral imaging, and single-molecule spectroscopy,” explains Ed Gooding, Ph.D., spectroscopy product manager at Princeton Instruments. “Every element of the ProEM:1600 has been optimized to make life easier for spectroscopists, including a new software feature that virtually eliminates frame-to-frame instability even at the highest spectral rates.”

The new ProEM:1600 EMCCD camera for spectroscopy also provides the same highly innovative features that have already become hallmarks of the ProEM platform, including a Bias Active Stability Engine (BASE™), Princeton Instruments Noise Suppression (PINS™) technology, and OptiCAL™ — on-demand EM gain calibration via a built-in light source. A hardware-generated timestamp on each frame, meanwhile, takes the guesswork out of time-resolved photometry.

The camera’s advanced, all-metal-seal vacuum design delivers deep thermoelectric cooling and low dark current. Vacuum performance is guaranteed for the lifetime of the camera, the only such guarantee in the industry. The ProEM:1600 is cooled with air, liquid, or a combination of the two. For vibration-sensitive applications, maximum cooling can be achieved using liquid recirculation, eliminating fanvibration.

The latest Gigabit Ethernet (GigE) interface allows remote operation of the new camera via a single cable without the need for custom frame grabbers. The ProEM:1600 operates on 32-bit and 64-bit Microsoft® Windows® operating systems and is fully supported under LightField™, Princeton Instruments’ advanced 64-bit data acquisition software featuring the patent-pending IntelliCal™ spectral calibration routine.

View the datasheet at: http://www.princetoninstruments.com/products/imcam/proem/dsheet.aspx

-----
 
Posted by Lee Mather

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Avinger signs agreement with HealthTrust for OCT image-guided atherectomy system

HealthTrust will acquire Avinger's Pantheris OCT image-guided atherectomy system that recently received FDA approval.

SalutarisMD to introduce minimally invasive ophthalmic device for wet AMD therapy

SalutarisMD has developed an investigational ophthalmic treatment for wet age-related macular degeneration (AMD).

Wearable light therapy device for hair loss receives regulatory approval in Brazil

The iGrow hair growth system, a wearable low-level light therapy device for treating hair loss, is cleared for use in Brazil.

FDA authorizes emergency use of Zika virus molecular detection assay

The xMAP MultiFLEX Zika RNA assay combines optofluidics and digital signal processing to detect Zika virus in vitro.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS