Intravital microscopy enables understanding of excytosis occurrence

Exocytosis, the fundamental process by which cells secrete hormones such as insulin and other useful biological substances, is regulated far differently in life than in laboratory tissue cultures and explanted organs, according to research presented at the American Society of Cell Biology's 50th Annual Meeting in Philadelphia.

The unexpected findings that exocytosis regulation in-vivo is not the same as in vitro is a reminder of the gap between laboratory glassware experiments and the cell biology of living animals and humans, said Roberto Weigert, Ph.D., of the National Institutes of Health (NIH), National Institute of Dental and Craniofacial Research (NIDCR).

Thanks to intravital microscopy, an optical imaging technique, Weigert and colleagues were able to determine for the first time how exocytosis actually occurs in the salivary glands of a living mouse.

During exocytosis, a cell internally packs up secretions and ferries them to the plasma membrane (PM) that demarcates the cell from its surroundings. There, the packages, which are named secretory vesicles, fuse with the PM and then eject their contents. The process has been studied for decades in glassware experiments involving cultured cells and tissues.

According to previous in vitro studies in the salivary glands, multiple secretory vesicles fuse with the PM, forming strings of vesicles in a process stimulated by two classes of chemical switches, muscarinic and beta-adrenergic receptors.

However, when the scientists examined the process in-vivo, they saw the secretory vesicles fuse, not in strings, but one by one with the PM and only under stimulation from beta-adrenergic receptors.

Their additional in-vivo studies revealed that the fusion step requires the assembly of a scaffold around the membrane of the vesicles.

This scaffold contains actin, a protein that forms filaments, and myosin II, a protein that binds to multiple actin filaments. When assembled, these molecules generate a contractile force that pushes the membranes and drives the fusion process to completion.

The molecular differences between in-vivo and in vitro may seem minor, but may have a large impact, said Weigert, because exocytosis is fundamental to understanding the basis of secretory dysfunctions, such as diabetes, in which insulin is transported in secretory vesicles.

-----

Posted by Lee Mather

Follow us on Twitter

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Raman scattering method can detect pluripotent stem cells with high sensitivity

An extremely sensitive technique for detecting pluripotent stem cells is at the scale needed for clinical applications.

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS