Hamamatsu digital camera for fluorescence microscopy

bowprodhamamatsu120210

The ORCA-Flash2.8 camera from Hamamatsu Photonics (Bridgewater, NJ) features a FL-280 CMOS image sensor, which offers 2.8 Mpixels and a 3.63 × 3.63 µm pixel size. Wavelength sensitivity ranges from UV to visible, with peak sensitivity over 60% QE at 450-500 nm. Suitable applications include ratio imaging, fluorescence resonance energy transfer (FRET), fluorescence in situ hybridization (FISH), total internal reflection fluorescence (TIRF) microscopy and real-time confocal microscopy.
----

PRESS RELEASE

Hamamatsu introduces new ORCA-Flash2.8 scientific CMOS camera 

Bridgewater, NJ, USA – March 18, 2010 – Hamamatsu introduces the new ORCA-Flash2.8, our first high-sensitivity digital camera based on a next-generation scientific CMOS image sensor. Designed for low-light imaging at high frame rates, this new camera combines high resolution, high sensitivity, high speed, and low noise at an affordable price.
 
At the camera’s core is a new scientific CMOS image sensor, the FL-280, which features 2.8 megapixels and a pixel size of 3.63 x 3.63 µm, ensuring high resolution. The sensor’s wavelength sensitivity ranges from UV to visible, with peak sensitivity (over 60% QE) at about 450-500 nm. In addition to high sensitivity, the sensor features low readout noise, typically 3 electrons r.m.s. The sensor’s design keeps the readout noise minimal even at very fast readout speeds, unlike traditional image sensors. The FL-280 sensor also has low dark current. Because of its intrinsically low dark current, the sensor requires cooling to +5°C only.
 
Built for high-speed imaging, the ORCA-Flash2.8’s readout speed ranges from 45 frames/second at full resolution up to 1273 frames/second with sub-array readout. Other features of the camera include external trigger functions, real-time corrections, and analog gain. The camera is designed for quantitative measurements with 12-bit output, and it interfaces with a PC using a CameraLink frame grabber board (included with the camera).
 
The ORCA-Flash2.8 is suitable for a wide variety of applications. These include life science imaging such as ratio imaging, FRET, FISH, TIRF microscopy, and real-time confocal microscopy. Other applications include semiconductor inspection and industrial imaging.

Hamamatsu is exhibiting the ORCA-Flash2.8 at Analytica 2010 in Munich, Germany, from March 23 to March 26 (booth number A2 420). Demo cameras will be available in May 2010.

Visit the product page here. To view full technical specifications, please download the product datasheet. Information on pricing and delivery can be obtained by calling your Hamamatsu company.

-----

Posted by Lee Mather

Follow us on Twitter

Subscribe now to BioOptics World magazine; it's free!

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Blood becomes a laser emitter for drug testing, cancer treatment

Combining laser light with an FDA-approved green fluorescent dye can monitor cell structure and activity at the molecular level.

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS