Nanoscale MRI depends on AFM, fluorescence

"It's by far the most sensitive MRI imaging technique that has been demonstrated," says Raffi Budakian, assistant professor of physics at the University of Illinois at Urbana-Champaign, commenting on combining atomic force microscopy (AFM) with magnetic resonance imaging (MRI)–magnetic resonance force microscopy (MRFM). MRFM enables 3D visualization of tiny specimens. MRI offers unparalleled 3D imaging of living tissue without inflicting damage, but with resolution limited to several cubic microns.

In 2009, Christian Degen, assistant professor of chemistry at the Massachusetts Institute of Technology (MIT), and colleagues at the IBM Almaden Research Center, built the first MRFM device capable of imaging viruses in 3D.1 On April 25, 2010, the paper reporting this ability was awarded a 2009 Cozzarelli Prize by the National Academy of Sciences.

MRFM involves attaching the sample to the end of a tiny silicon cantilever. As a magnetic iron cobalt tip nears the sample, the atoms' nuclear spins become attracted to it and generate a small force on the cantilever. Spins are repeatedly flipped, causing the cantilever to gently sway. Displacement is measured with a laser beam to create a series of 2D images, then combined to generate a 3D image. MRFM resolution is nearly as good (within a factor of 10) as that of electron microscopy. But electron microscopy damages delicate samples.

Degen and two of his students are pursuing another new approach to nanoscale MRI that uses fluorescence instead of magnetism, replacing the magnetic tip with a diamond that has a nitrogen-vacancy defect in its crystal structure. The diamond functions as a sensor because its fluorescence intensity is altered by interactions with magnetic spins.

  1. C.L. Degen et al., PNAS 106(5), 1313–1317, Feb. 3, 2009.

 

More Brand Name Current Issue Articles
More Brand Name Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

LuxCath optical tissue characterization catheter enables real-time monitoring during cardiac ablation

A study used optical tissue characterization technology for the first time in procedures to treat arrhythmia patients.

EUV spectral imaging tool can map cell composition in 3D

A newly developed spectral imaging instrument enables observation of how cells respond to new medications at a minute level.

Fluorescence Imaging: Optical filtering basics for life sciences

Optical filters can have a dramatic effect on outcomes in life sciences. These principles demonstrate how next-generation thin film enhances excitation and emission in fluorescence bioimaging syste...

Photoacoustics/Biomedical Imaging: Photoacoustic imaging progresses toward medical diagnostics

Recent technological developments in laser and transducer hardware, contrast agents, and image reconstruction algorithms have helped to advance photoacoustic (or optoacoustic) imaging.  

Translational Research: Bench-to-bedside: Progress, pioneers, and 21st Century Cures

The NIH/SPIE Biophotonics from Bench to Bedside workshop (Sept. 24-25) featured speakers and posters presenting exciting translational research in technologies and applications.

Legislation promises biophotonics opportunities

The 21st Century Cures Act (H.R. 6) was a focal point at the NIH/SPIE Biophotonics from Bench to Bedside workshop.

Zeiss partners with Molecular Imaging Platform at McGill University Health Centre

Zeiss has entered into a partnership with the Research Institute of the McGill University Health Centre's Molecular Imaging Platform.

Biophotonics innovator Ozcan wins International Commission for Optics Prize

UCLA professor and biophotonics innovator Aydogan Ozcan has received the International Commission for Optics (ICO) Prize.

New biosensor provides spatially resolved hydrogen peroxide sensing in cells

A new biosensor is able to show the location of the key cellular signaling chemical inside living cells with high resolution over time.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2015. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS