Nanoscale MRI depends on AFM, fluorescence

"It's by far the most sensitive MRI imaging technique that has been demonstrated," says Raffi Budakian, assistant professor of physics at the University of Illinois at Urbana-Champaign, commenting on combining atomic force microscopy (AFM) with magnetic resonance imaging (MRI)–magnetic resonance force microscopy (MRFM). MRFM enables 3D visualization of tiny specimens. MRI offers unparalleled 3D imaging of living tissue without inflicting damage, but with resolution limited to several cubic microns.

In 2009, Christian Degen, assistant professor of chemistry at the Massachusetts Institute of Technology (MIT), and colleagues at the IBM Almaden Research Center, built the first MRFM device capable of imaging viruses in 3D.1 On April 25, 2010, the paper reporting this ability was awarded a 2009 Cozzarelli Prize by the National Academy of Sciences.

MRFM involves attaching the sample to the end of a tiny silicon cantilever. As a magnetic iron cobalt tip nears the sample, the atoms' nuclear spins become attracted to it and generate a small force on the cantilever. Spins are repeatedly flipped, causing the cantilever to gently sway. Displacement is measured with a laser beam to create a series of 2D images, then combined to generate a 3D image. MRFM resolution is nearly as good (within a factor of 10) as that of electron microscopy. But electron microscopy damages delicate samples.

Degen and two of his students are pursuing another new approach to nanoscale MRI that uses fluorescence instead of magnetism, replacing the magnetic tip with a diamond that has a nitrogen-vacancy defect in its crystal structure. The diamond functions as a sensor because its fluorescence intensity is altered by interactions with magnetic spins.

  1. C.L. Degen et al., PNAS 106(5), 1313–1317, Feb. 3, 2009.

 

More Brand Name Current Issue Articles
More Brand Name Archives Issue Articles

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

New bioimaging technique offers clear view of nervous system

Scientists at Ludwig-Maximilians University have developed a technique for turning the body of a deceased rodent entirely transparent, revealing the central nervous system in unprecedented clarity....

Fluorescent jellyfish proteins light up unconventional laser

Safer lasers to map your cells could soon be in the offing -- all thanks to the humble jellyfish. Conventional lasers, like the pointer you might use to entertain your cat, produce light by emittin...

Fluorescence microscopy helps provide new insight into how cancer cells metastasize

By using fluorescence microscopy, scientists have discovered an alternate theory on how some cancer cells metastasize.

In vivo imaging method visualizes bone-resorbing cell function in real time

In vivo imaging can visualize sites where osteoclasts (bone-resorbing cells) were in the process of resorbing bone.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS