For the first time, quantum optical coherence tomography (QOCT)1 has been proved viable for imaging biological samples. M. Boshra Nasr, a postdoctoral researcher in Boston University’s Quantum Imaging Laboratory led the work that has produced the first such experimental QOCT images.

The approach is appealing because, unlike classical OCT, QOCT is inherently immune to group-velocity dispersion (GVD), which degrades the axial resolution. This immunity is a result of the frequency entanglement inherent in the light source.2 QOCT is a fourth-order interferometric optical-sectioning scheme that makes use of frequency-entangled photon pairs that are generated via the process of spontaneous optical-parametric downconversion (SPDC). By contrast, conventional OCT is a second-order interferometric scheme that enables high-resolution axial sectioning through the use of ultrabroadband light–but that’s what leads to GVD.

Results of the researchers’ onion-skin sample tests produced 2-D (x, y) sections at different axial (z) depths.
Click here to enlarge image

In addition, QOCT produces double the resolution for the same bandwidth. QOCT had previously been shown to work on other materials,3 “but it’s harder to work with biological specimens,” Nasr says.

Nasr and his fellow researchers chose for their sample white onion-skin tissue, which they coated with spherical gold nanoparticles to increase reflectance. The nanoparticles were functionalized with bovine serum albumin (BSA). Their results are presented in transverse sections at different depths. These x,y sections, 75 × 100 µm2 each, were taken at depth intervals of 1 µm. They chose the z origin to approximately coincide with the surface of the onion-skin cells so that, roughly speaking, negative z positions correspond to sectioning in the air above the sample, while positive z positions correspond to sectioning within the cells. A strong QOCT signal is indicated by a decrease in the observed coincidence rate, corresponding to a path-length match between the delay and the sample arms. The C-scan at z = 2 µm clearly shows the elongated structure that is characteristic of onion-skin cells.

Now the researchers hope to make the process more practical, which will require more sophisticated components. Superconducting single-photon detectors and faster coincidence circuits should increase speed by a couple orders of magnitude and boost the signal-to-noise ratio. Similarly, biphoton sources with ultrahigh axial resolution promise to further improve QOCT.

Nasr’s ultimate goal is to see the technique transformed into a clinical tool. While the results are inspiring, “we are still at the very beginning,” he says. –Barbara Goode


  1. M. B. Nasr et al., Opt. Express 12, 1353 (2004).
  2. A. M. Steinberg et al., Phys. Rev. Lett. 68, 2421(1992).
  3. M. B. Nasr et al., Phys. Rev. Lett. 91, 083601 (2003).

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

NIR spectroscopy intravascular imaging system receives $25M investment

Medical device maker Infraredx has received a $25 million equity investment from Nipro Corporation, which builds on an exclusive agreement between the two companies for distribution of Infraredx's ...

OCT pioneer Fujimoto selected as 2014 IEEE Photonics Award winner

James Fujimoto, the Elihu Thomson Professor of Electrical Engineering at the Massachusetts Institute of Technology (MIT), has been selected for the 2014 IEEE Photonics Award.

OCT combo system receives FDA clearance, begins shipping worldwide

Ophthalmic device maker Optovue has received FDA 510(k) clearance for its iFusion combination system, which pairs the company's iVue spectral-domain optical coherence tomography (SD-OCT) system and...

OCT symposium emphasizes key applications

Overviews of biomedical imaging in general, and optical coherence tomography (OCT) in particular, kicked off the first international symposium hosted last week by the Center for Biomedical OCT Rese...


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS