New method targets specific brain cells for Parkinson's treatment

APRIL 17, 2009--Using a technology called optogenetics, a Stanford University(Stanford, CA) team has proven able to precisely control individual components of the neurological circuit implicated in Parkinson's disease. In doing so, the researchers have identified a specific group of cells as direct targets of deep brain stimulation (DBS), a Parkinson's treatment.

Optogenetics, whose development was funded by the National Science Foundation (NSF), uses light-activated proteins, originally isolated from bacteria, in combination with genetic approaches. The technique is a vast improvement over previous methods because it allows researchers to precisely stimulate neurons and measure the effect of treatment simultaneously in animals with Parkinson's-like symptoms.

Karl Deisseroth, in Stanford's bioengineering department led the research, which is described in the April 17 issue of Science. The team found they could reduce disease symptoms by preferentially activating neurons that link to the subthalamic nucleus region of the brain. First, these specific cells were treated in a way that made them sensitive to stimulation by blue light, then the team implanted an optical fiber in the brain.

When researchers rapidly flashed blue light inside the animals' brains the disease symptoms improved. In contrast, treating with slower flashes of light actually made the symptoms worse, and targeting other kinds of cells had no effect at all, indicating both proper cell type and stimulation frequency are crucial components of effective treatment. Flashing blue light on portions of the same neurons found closer to the outer surface of the brain had an effect similar to treatment deep within the brain, raising the possibility that researchers may be able to develop treatments that are less invasive than current options.

Approved as a medical treatment in 1997, DBS remains controversial because it doesn't work on all patients. Used to treat Parkinson's disease, depression and movement disorders, DBS involves surgical implantation of a brain pacemaker, which sends electrical impulses into the brain. In the past, researchers have been unable to understand the effective mechanism of DBS because the electrical signal emitted by DBS devices interferes with the ability to observe brain activity.

Explains Deisseroth, "The brain is an electrical device, but it is a very complicated device. Think of it as an orchestra without sections: all of the types of instruments, or cells, are mixed together. Treatments like DBS are unrefined, in that they stimulate all of the cells or instruments. The optogenetic approach allows us to control stimulation of specific cells in the brain on the appropriate timescale, much like a conductor directing specific sections of an orchestra at the appropriate time."

Production of new therapies is always a long-term goal, but for now Deisseroth and his group are focused on mapping disease circuits and understanding brain function. "We need to understand the players before we can develop effective treatment strategies," he stated.

For further information see the Deisseroth Lab page on Stanford's site. And, see a discussion of optogenetics on Wikipedia.

Posted by Barbara G. Goode, barbarag@pennwell.com, for BioOptics World.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

(SLIDE SHOW) Photonics on the brain

Photonics are helping to measure, manipulate, and follow molecular events in living neurons, which could lead to treatments, cures, and possibly even preventions of brain disorders and diseases.

NIR spectroscopy instrument assists in monitoring brain injuries

Researchers at the Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences (IBBE PAS) are developing a near-infrared (NIR) spectroscopy instrument that enabl...

Adaptive optics visualizes, characterizes vascular disease early and noninvasively

Researchers at the University of Melbourne in Australia have demonstrated direct, noninvasive optical imaging of erythrocyte flow in human retinal capillaries, and validated its use as an investiga...

'Pawsitive' light therapy helps your pet beat the winter blues

Perhaps seasonal affective disorder (SAD), a cause of depression typically seen in regions with long winter nights, doesn't just occur in people.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS