100x stability-boost technique transferable to commercial AFMs

MARCH 25, 2009--In proving the ability to detect and observe light reflected directly off the tip of an atomic force microscope (AFM) probe, researchers at JILA--a joint institute of the University of Colorado (CU) and the National Institute of Standards and Technology (NIST) have demonstrated a 100-fold improvement in measurement stability under ambient conditions. The achievement, reported in Nano Letters, has implications for bio applications involving atomic-scale measurements at room temperature in liquids.

An AFM works by scanning a pointed probe, fixed to one end of a cantilever and affected by atomic-scale forces, across a sample. By reflecting a laser beam from the top of the cantilever, it builds a fine-resolution topographic image of the sample. The highly sensitive instruments are also are extremely sensitive to interference, making it difficult or impossible either to hold the probe in one place to observe the specimen under it over time (useful for studying the dynamics of proteins) or to move the probe away and return to the same spot. "At this scale, it's like trying to hold a pen and draw on a sheet of paper while riding in a jeep," observes NIST physicist Thomas Perkins. A few instruments in specialized labs, including some at NIST, solve this problem by operating at extremely cold temperatures in ultra-high vacuums and in heavily isolated environments, but those options aren't available for the vast majority of AFMs, particularly those used in bioscience laboratories where the specimen often must be immersed in a fluid.

The JILA solution uses two additional laser beams to sense the three-dimensional motion of both the test specimen and the AFM probe. The beams are held stable relative to each other to provide a common reference. To hold the specimen, the team uses a transparent substrate with tiny silicon disks--"fiducial marks"--embedded in it at regular intervals. One laser beam is focused on one of these disks. A small portion of the light scatters backwards to a detector. Any lateral vibration or drift of the sample shows up at the detector as a motion of the spot while any vertical movement shows up as a change in light intensity.* A similar trick with the second beam is used to detect vibration or drift in the probe tip, with the added complication that the system has to work with the scant amount of light reflected off the apex of the AFM probe. Unwanted motion of the tip relative to the sample is corrected on the fly by moving the substrate in the opposite direction. "This is the same idea as active noise cancellation headphones, but applied to atomic force microscopy," says Perkins.

In its most recent work, the JILA team has controlled the probe's position in three dimensions to better than 40 picometers (1 nanometer = 1000 picometers) over 100 seconds. In imaging applications, they showed the long-term drift at room temperature was a mere 5 picometers per minute, a 100-fold improvement over the best previous results under ambient conditions. Just like photographers use the stability of a tripod and longer exposures to improve picture quality, the JILA team used their improved stability to scan the AFM probe more slowly, leading to a 5-fold improvement in AFM image quality. A bonus, says Perkins, is the technique works with standard commercial probes.

* The sample control technique was first reported in: A.R. Carter, G.M. King and T.T. Perkins. Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D. Optics Express V. 15, No. 20. Oct. 1, 2007.

More information: see the paper, Ultrastable atomic force microscopy: Atomic-scale stability and registration in ambient conditions, in Nano Letters.

Posted by Barbara G. Goode, barbarag@pennwell.com, for BioOptics World.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

Four-lens light-sheet microscope delivers whole-embryo images in real time

A team of researchers from the Max Planck Institute and Technical University (both in Dresden, Germany) has created the first microscope that processes image data in real time and provides the rese...

Biophotonic Solutions closes $1M funding round

Automated laser pulse compression technology developer Biophotonic Solutions Inc. (BSI) has closed a $1 million Series A funding round led by the Michigan Angel Fund.

Microscopy helps discover potential new drug target for cystic fibrosis

An international team of scientists, using automated microscopy and genetics, have discovered a promising potential drug target for cystic fibrosis.

(SLIDE SHOW) Photonics on the brain

Photonics are helping to measure, manipulate, and follow molecular events in living neurons, which could lead to treatments, cures, and possibly even preventions of brain disorders and diseases.

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS