Technique uses sugars to image vertebrate development

Berkeley, CA, USA--Carolyn Bertozzi, of UC Berkeley and the Lawrence Berkeley National Lab, has developed a series of techniques to manipulate glycans, sugars that occur throughout living things and are particularly abundant on the surfaces of cells. Her techniques provide, among other uses, a totally new way of visualizing vertebrate development.

Using developing zebrafish, Bertozzi and her colleagues tracked glycans moving and rearranging themselves. "We found some interesting and totally unexpected patterns as the sugars moved and clustered in certain areas." Bertozzi says, "It's like putting a new telescope up to the stars and seeing something new. And then you have to figure out what it is."

For instance, glycan patterns on cells in the mouth region (outlined in the grayscale image above, left) are shown (above, right) as they change beginning at 60 hours after fertilization (orange) and again an hour later (green).

Unlike proteins, glycans are not directly programmed by genes. They can't be labeled using genetic methods, in the way that a protein can be made to fluoresce by genetically combining its gene with that of a fluorescent protein. Instead, Bertozzi has devised ways to rig target glycans with reactive groups called "chemical reporters." Probes such as fluorescing molecules (fluorophores) are then sent in to react with the reporters.

Just over a decade ago, in what she called "an equal combination of cell biology and synthetic organic chemistry," she and her colleagues devised the key component of cell-surface engineering, the use of natural biological processes to plant artificial markers on the surfaces of living cells.

Bertozzi is director of the Molecular Foundry and professor of Chemistry and Molecular and Cell Biology, a Howard Hughes Medical Institute investigator, and a member of Berkeley Lab's Materials Sciences and Physical Biosciences Divisions. For more on her technique, see Imaging the Glycomes of Living Organisms at the Lawrence Berkeley National Laboratory site.

Posted by Barbara G. Goode, barbarag@pennwell.com, for BioOptics World.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

NANOTECHNOLOGY/LIGHT ACTIVATION: IR light method turns blood clotting on (like drugs) and off (like nothing else)

Gold nanoparticles, controlled by infrared (IR) light from a pulsed femtosecond laser, promise to promote wound healing and help doctors control blood clotting in patients undergoing surgery.

Microscopy helps discover potential new drug target for cystic fibrosis

An international team of scientists, using automated microscopy and genetics, have discovered a promising potential drug target for cystic fibrosis.

Next-gen DNA sequencing helps provide new genetic clue to anorexia

The largest next-generation DNA sequencing study of anorexia nervosa to date has linked the eating disorder to variants in a gene coding for an enzyme that regulates cholesterol metabolism.

Synchrotron light identifies RNA double helix structure

Scientists at McGill University have crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS) and the Cornell High Energy Synchrotron to confirm th...

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS