First noninvasive early cataracts detection device based on NASA optical fiber probe

JANUARY 13, 2009--Researchers from the National Eye Institute (NEI, part of the National Institutes of Health), and the National Aeronautics and Space Administration (NASA) say their simple, safe new eye test for measuring a protein related to cataract formation has proven valuable for clinic patients. Based on a compact fiber-optic probe designed for the space program, the scientists' creation is the first non-invasive early detection device for cataracts. If subtle protein changes can be detected before a cataract develops, the scientists reason, people may be able to reduce their cataract risk by making lifestyle changes, such as decreasing sun exposure, quitting smoking, stopping certain medications and controlling diabetes.

"By the time the eye's lens appears cloudy from a cataract, it is too late to reverse or medically treat this process," said Manuel B. Datiles III, M.D., NEI medical officer and lead author of the clinical study. "This technology can detect the earliest damage to lens proteins, triggering an early warning for cataract formation and blindness."

The new device is based on a laser light technique called dynamic light scattering (DLS). It was initially developed to analyze the growth of protein crystals in a zero-gravity space environment. NASA's Rafat R. Ansari, Ph.D., senior scientist at the John H. Glenn Research Center and co-author of the study, brought the technology's possible clinical applications to the attention of NEI vision researchers when he learned that his father's cataracts were caused by changes in lens proteins.

Several proteins are involved in cataract formation, but one known as alpha-crystallin serves as the eye's own anti-cataract molecule. Alpha-crystallin binds to other proteins when they become damaged, thus preventing them from bunching together to form a cataract. However, humans are born with a fixed amount of alpha-crystallin, so if the supply becomes depleted due to radiation exposure, smoking, diabetes or other causes, a cataract can result.

"We have shown that this non-invasive technology that was developed for the space program can now be used to look at the early signs of protein damage due to oxidative stress, a key process involved in many medical conditions, including age-related cataract and diabetes, as well as neurodegenerative diseases such as Alzheimer's and Parkinson's," said NASA's Dr. Ansari. "By understanding the role of protein changes in cataract formation, we can use the lens not just to look at eye disease, but also as a window into the whole body."

The recent NEI-NASA clinical trial, reported in the December 2008 Archives of Ophthalmology, looked at 380 eyes of people aged 7 to 86 who had lenses ranging from clear to severe cloudiness from cataract. Researchers used the DLS device to shine a low-power laser light through the lenses. They had previously determined alpha-crystallin's light-scattering ability, which was then used to detect and measure the amount of alpha-crystallin in the lenses.

They found that as cloudiness increased, alpha-crystallin in the lenses decreased. Alpha-crystallin amounts also decreased as the participants' ages increased, even when the lenses were still transparent. These age-related, pre-cataract changes would remain undetected by currently available imaging tools.

The DLS technique will now assist vision scientists in looking at long-term lens changes due to aging, smoking, diabetes, LASIK surgery, eye drops for treating glaucoma, and surgical removal of the vitreous gel within the eye, a procedure known to cause cataracts within six months to one year. It may also help in the early diagnosis of Alzheimer's disease, in which an abnormal protein may be found in the lens. In addition, NASA researchers will continue to use the device to look at the impact of long-term space travel on the visual system.

The paper, Clinical Detection of Precataractous Lens Protein Changes Using Dynamic Light Scattering, in Archives of Ophthalmology

Posted by Barbara G. Goode, barbarag@pennwell.com.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

(SLIDESHOW) View the July/August 2013 issue

Sales of Coherent lasers for ophthalmology exceed 10,000 units

Coherent has now shipped over 10,000 lasers into ophthalmic applications, including pulsed excimer ultraviolet lasers for LASIK vision correction and continuous-wave (CW) solid-state lasers with gr...

WaveTec Vision secures $16.5M to market cataract surgery system

WaveTec Vision has closed a new round of financing for its recently introduced ORA System, a wavefront aberrometry system for cataract surgery, securing an additional $16.5 million.

Anterior segment module receives FDA clearance

Heidelberg Engineering has gained FDA clearance for its Spectralis anterior segment module, which provides high-resolution images of the cornea, anterior chamber angle, and sclera using the company...

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World