In vivo 3D cellular imaging of eyes is aim of extended research grant

DECEMBER 30, 2008--The National Eye Institute (Bethesda, MD) has awarded a $5 million research grant to ophthalmologist John S. Werner of the University of California-Davis and researchers at three other universities. The grant will fund continued development of technology for three-dimensional imaging of cells in the living eye.

The studies, part of the next five-year phase of a Bioengineering Research Partnership, could benefit increasing numbers of patients suffering from glaucoma and age-related macular degeneration. Cell-level imaging of eyes would provide significant advances in understanding the origins of retinal and optic nerve disease and in evaluating novel therapies for a wide spectrum of blinding diseases.

"Our project has been described as the Hubble telescope of the eye," said Werner, the project's principal investigator and a professor at the UC Davis Health System Eye Center.

"Vision and visual disorders begin at the cellular and molecular levels, yet the ability to visualize most cellular structures in vivo continues to elude scientists and clinicians," said Werner, whose research interests include changes in vision across the life span and diseases of the retina and optic nerve. "Despite extraordinary advances in retinal imaging, only a small fraction of human retinal cells have been visualized in the living eye."

The first phase of the partnership, started in 2003, combined adaptive optics and optical coherence tomography (OCT) to provide high-lateral and high-axial resolution, respectively. The initial phase also was funded by a five-year, $5 million grant from the National Eye Institute.

Led by Werner, investigators used this new instrumentation to create volume images of structures previously only visible with histology, including the photoreceptor outer segments, Fibers of Henle, individual optic nerve fiber bundles, detailed structures within the drusen, or lesions, of macular degeneration patients, and the fine structure of the lamina cribosa of the optic nerve. They developed instrumentation with sufficient resolution to image all the major retinal neurons in three dimensions.

However, while the resolution of their instruments reached the cellular scale, many cells and structures of interest were of low contrast. As a result, the major engineering focus of the next five years will be on contrast enhancement through additional imaging techniques. The resulting adaptive optics and optical coherence tomography instruments will permit human in vivo imaging with sufficient resolution and contrast to visualize the smallest of cells in the human retina.

Partner institutions include Duke University, Department of Bioengineering; Indiana University, Department of Optometry; and Lawrence Livermore National Laboratory, Physics and Advanced Technologies Section.

The project's engineering aims have parallel clinical/vision science objectives, including advancing the understanding of changes in cell layers associated with the most common worldwide diseases leading to blindness, including age-related macular degeneration and glaucoma.

More information:
John Werner's Vision Science and Advanced Retinal Imaging lab

Posted by Barbara G. Goode,

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

(SLIDESHOW) View the July/August 2013 issue

Sales of Coherent lasers for ophthalmology exceed 10,000 units

Coherent has now shipped over 10,000 lasers into ophthalmic applications, including pulsed excimer ultraviolet lasers for LASIK vision correction and continuous-wave (CW) solid-state lasers with gr...

WaveTec Vision secures $16.5M to market cataract surgery system

WaveTec Vision has closed a new round of financing for its recently introduced ORA System, a wavefront aberrometry system for cataract surgery, securing an additional $16.5 million.

Anterior segment module receives FDA clearance

Heidelberg Engineering has gained FDA clearance for its Spectralis anterior segment module, which provides high-resolution images of the cornea, anterior chamber angle, and sclera using the company...


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS