Nikon, Thorlabs pair OCT, microscopy for live cell, animal research

NOVEMBER 18, 2008 -- Nikon Instruments (Melville, NY) and Thorlabs (Newton, NJ) have collaborated to bring optical coherence tomography (OCT) to Nikon's FN1 "PhysioStation" upright focusing nosepiece microscope system for neurophysiology and in vivo, small-animal studies. Designed for neuroscience and electrophysiology applications, the new OCT system enables an imaging depth of 2-3 mm in biological tissue with a larger field of view than in conventional microscopy.

The system was customized by Thorlabs specifically for Nikon's FN1 microscope system. It offers rapid 3D imaging capabilities based on a relatively low magnification objective, making the full system suitable for live-animal imaging. Using a non-destructive wavelength-swept infra-red laser, the system acquires data from deep within the specimen, giving researchers a real-time 2D slice view (up to 3 mm deep by 10 mm long) of the specimen. Counterstaining or labeling of the specimen is not necessary, making preparation easy. High resolution 3D volume reconstructions can be made of specimens by rastering the low-powered laser field.

"In pairing the FN1 microscope with Thorlabs' OCT technology, we are able to complement our traditional widefield and confocal imaging systems by providing a similar but more macro view," said Stan Schwartz, vice president, Nikon Instruments, Inc. "The large image penetration depth allows for non-invasive, 3D imaging of samples, which previously could not be imaged without dissection."

All of the traditional optical microscope imaging techniques, such as DIC, oblique illumination, IR-DIC and multiple wavelength epifluorescence, are maintained on this system, even when combined with the OCT modality. A simple lever change can engage the OCT imaging or the system can be used in the normal modes. The OCT imaging mode can provide a 3D overview of the large field of view so that the location of specific morphology structures can be targeted easily.

More information:
Nikon Instruments Inc.
Thorlabs Inc.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

(SLIDE SHOW) BioOptics World 2013 year in review

Four-lens light-sheet microscope delivers whole-embryo images in real time

A team of researchers from the Max Planck Institute and Technical University (both in Dresden, Germany) has created the first microscope that processes image data in real time and provides the rese...

Biophotonic Solutions closes $1M funding round

Automated laser pulse compression technology developer Biophotonic Solutions Inc. (BSI) has closed a $1 million Series A funding round led by the Michigan Angel Fund.

Microscopy helps discover potential new drug target for cystic fibrosis

An international team of scientists, using automated microscopy and genetics, have discovered a promising potential drug target for cystic fibrosis.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World