Rapid detection technique could alert for deadly infectious agents, allergens

OCTOBER 24, 2008 -- Andrea Armani of the University of Southern California has adapted an optical microcavity resonance technique for rapidly detecting even individual unlabelled target molecules. Her technique could prove extremely valuable because even very small numbers of deadly infectious agents or allergenic pollen molecules can cause major problems for humans -- but detecting such trace amounts has been difficult to accomplish with enough speed to do any good.

The central element of Armani's detector is a microtoroid resonator -- a ring of glass about 3 microns thick with a diameter of 100 microns. The resonator is created using photolithography techniques developed for the semiconductor industry, but then Armani coats it with a protein that binds only to the target molecule. Finally, a tapered optical fiber is mated tangentially to the ring, enabling tunable laser light to be introduced into the ring so the waves match precisely with each circuit.

Should even a single target molecule bind on the outside of the resonator, it will absorb a small amount of light from the "evanescent" field that extends a fraction of a micron beyond the glass ring, causing a change in resonance. Because the light continues to circulate through the ring, even the slight change due to a single molecule is strongly reinforced and can be detected.

Armani reported her successful detection of two Timothy grass pollen proteins, which are major human allergens, during this week's AVS Symposium. Her talk was titled "Biophotonics: Resonant Detection of Single Molecules. Her future efforts aim to adapt this technique to enable the rapid, remote detection of a wide variety of single molecules in the environment and in vitro.

Armani's technique could prove extremely valuable because even very small numbers of deadly infectious agents or allergenic pollen molecules can cause major problems for humans -- but detecting such trace amounts has been difficult to accomplish with enough speed to do any good. Currently popular techniques -- for example, air sampling on filters or slides until enough molecules for a detectible signal or preparing specially tagged molecules for lab experiments -- are more suitable for general research than alerting people to an imminent threat.

More information:
"Biophotonics: Resonant Detection of Single Molecules" abstract

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

NANOTECHNOLOGY/LIGHT ACTIVATION: IR light method turns blood clotting on (like drugs) and off (like nothing else)

Gold nanoparticles, controlled by infrared (IR) light from a pulsed femtosecond laser, promise to promote wound healing and help doctors control blood clotting in patients undergoing surgery.

Microscopy helps discover potential new drug target for cystic fibrosis

An international team of scientists, using automated microscopy and genetics, have discovered a promising potential drug target for cystic fibrosis.

Next-gen DNA sequencing helps provide new genetic clue to anorexia

The largest next-generation DNA sequencing study of anorexia nervosa to date has linked the eating disorder to variants in a gene coding for an enzyme that regulates cholesterol metabolism.

Synchrotron light identifies RNA double helix structure

Scientists at McGill University have crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS) and the Cornell High Energy Synchrotron to confirm th...

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS