Flexible optical links portend "artificial skin" for vital-signs monitoring, other biomed uses

OCTOBER 13, 2008 -- The independent research center IMEC (Leuven, Belgium) says its associated laboratory at the Ghent University, INTEC, has made the first functional optical links embedded in a flexible substrate. The links include optical waveguides, light sources, and detectors. With this technique, it becomes possible to make foils that sense pressure changes -- which could be used as a synthetic skin.

Integrated optical interconnections have the advantage that they are insensitive to electromagnetic interference, applicable in harsh environments, and highly sensitive. Last year, IMEC reported embedded optical links on rigid surfaces. The current research takes optoelectronics one step further. Standard commercially available GaAs photo-detectors and GaAs VCSELs (vertical-cavity surface-emitting laser) are thinned down to 30 micrometers. Next, they are embedded into a flexible foil of optical transparent material and optically coupled with embedded waveguides and out-of-plane micromirrors. The resulting structure shows good adhesion and flexible behavior.

With this technology, IMEC is working on two types of sensors: array waveguide sensors and optical fiber sensors. Both can be used for sensor foils. Array waveguide sensors rely on the change in coupling between arrays of crossing waveguides. Two layers of polymer waveguides are separated by a thin layer of soft silicone. When no pressure is applied, no crosstalk is detected. But when pressure is applied to the foil, the distance between the waveguides in the separated layers decreases, and light is transmitted from one layer to the other. This low-cost sensor is ideally suited for high-density pressure sensors on small areas.

Optical sensing foils combine two technologies that have lately seen a growing interest: integrated optical interconnections, and flexible, stretchable electronics. The ambition of researchers is to create a flexible and stretchable skin-like foil sensitive to touch, pressure, or deformation. Such artificial skin could be used in medical and industrial environments. To this aim, a group of European research institutes, including IMEC, are collaborating in the 7th Framework project PHOSFOS (Photonic Skins For Optical Sensing).

PHOSFOS will develop photonic foils based on optical fiber sensors. These foils are targeted at applications in civil engineering and medicine. They will, for example, enable long-term monitoring of respiration and cardiac activity, as well as the detection of pressure points under bed-ridden patients.

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

(SLIDESHOW) View the July/August 2013 issue

Low-intensity red laser light boosts teeth whitening

A study conducted by researchers from São Paulo State University confirms that using low-level red laser light to activate bleaching gel increases the effectiveness of teeth whitening.

NONINVASIVE BIOIMAGING: NIR-based vascular imaging device wins excellence award

Christie Medical Innovations' (Memphis, TN) vascular imaging system, VeinViewer Vision, has been recognized as a winner for the 2011 Medical Design Excellence Award (MDEA).

Optical coherence tomography aids photodynamic therapy in skin cancer treatment

Researchers have documented successful use of Michelson Diagnostics' VivoSight optical coherence tomography (OCT) scanner for in-vivo mapping of non-melanoma skin cancer, which they used throughout...

BLOGS

Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...

CONNECT WITH US

            

Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS