Near-infrared photoacoustics enhance tissue and tumor imaging

Researchers in the Photoacoustic Imaging Group at the University College London (England) have developed a prototype photoacoustic imaging system that could significantly improve the detection and treatment of tumors, diseased blood vessels, and other soft-tissue conditions. The system uses extremely short pulses of low-level near-infrared laser energy to stimulate the emission of ultrasonic acoustic waves from the tissue area being examined. In operation, nanosecond pulses of near-infrared laser energy cause the target tissue to undergo a tiny rise in temperature and a tiny expansion, both of which contribute to the generation of small ultrasonic acoustic waves. These waves are then converted into high-resolution 3-D images of tissue structure.

The prototype instrument has been specifically designed to image very small (micron size) blood vessels relatively close to the tissue surface, utilizing a proprietary optical detector. Information generated about the distribution and density of these microvessels can in turn provide valuable data about skin tumors, vascular lesions, burns, other soft-tissue damage, and even how well an area of tissue has responded to plastic surgery following an operation. The technique is also capable of imaging deeper (to several centimeters) if piezoelectric detectors are used instead, although the tradeoff is reduced spatial resolution. “This new system offers the prospect of safe, noninvasive medical imaging of unprecedented quality,” says Paul Beard, who leads the Photoacoustic Imaging Group. “It also has the potential to be an extremely versatile, relatively inexpensive and even portable imaging option.” Contact Paul Beard at

Get All the BioOptics World News Delivered to Your Inbox

Subscribe to BioOptics World Magazine or email newsletter today at no cost and receive the latest news and information.

 Subscribe Now
Related Articles

(SLIDE SHOW) BioOptics World 2013 year in review

Four-lens light-sheet microscope delivers whole-embryo images in real time

A team of researchers from the Max Planck Institute and Technical University (both in Dresden, Germany) has created the first microscope that processes image data in real time and provides the rese...

Biophotonic Solutions closes $1M funding round

Automated laser pulse compression technology developer Biophotonic Solutions Inc. (BSI) has closed a $1 million Series A funding round led by the Michigan Angel Fund.

Microscopy helps discover potential new drug target for cystic fibrosis

An international team of scientists, using automated microscopy and genetics, have discovered a promising potential drug target for cystic fibrosis.


Neuro15 exhibitors meet exacting demands: Part 2

Increasingly, neuroscientists are working with researchers in disciplines such as chemistry and p...

Why be free?

A successful career contributed to keeping OpticalRayTracer—an optical design software program—fr...

LASER Munich 2015 is bio-bent

LASER World of Photonics 2015 included the European Conferences on Biomedical Optics among its si...

White Papers

Understanding Optical Filters

Optical filters can be used to attenuate or enhance an image, transmit or reflect specific wavele...

How can I find the right digital camera for my microscopy application?

Nowadays, image processing is found in a wide range of optical microscopy applications. Examples ...



Twitter- BioOptics World

Copyright © 2007-2016. PennWell Corporation, Tulsa, OK. All Rights Reserved.PRIVACY POLICY | TERMS AND CONDITIONS